Полезные свойства и применение ртути

Ртуть, благодаря своим удивительным свойствам, занимает особое место среди других металлов и широко используется в науке и технике.

Свойство ртути оставаться в жидком состоянии в интервале температур от 357,25 до —38,87° С является уникальным. При невысо­ких температурах ртуть инертна по отношению ко многим агрессив­ным жидкостям и газам, в том числе и к кислороду воздуха. Она практически не взаимодействует с концентрированной серной и соляной кислотами; ее используют при работе, например, с такими ядови­тыми и агрессивными веществами, как бороводороды.

 


Ртуть применяется в электротехнике, металлургии, в медицине, химии, в строительном деле, сельском хозяйстве и многих других областях; особенно значительна ее роль в лабораторной практике.


Общеизвестно применение ртути в манометрах, вакуумметрах, термометрах, в многочисленных конструкциях затворов, прерывате­лей, высоко вакуумных насосах, всевозможных реле, терморегулиру­ющих устройствах и пр.

Металлическую ртуть используют в качестве балластной, термостатирующей и уплотняющей жидкости, а пары ртути — как защитную атмосферу при нагревании металлов.

Ртуть широко применяют при электрохимических исследованиях и нормальных элементах Кларка и Вестона, обладающих стабильными значениями ЭДС, в электрометрах Липпмана, которые исполь­зуются для изучения строения двойного электрического слоя, зави­симости коэффициента трения от потенциала, межфазного поверх­ностного натяжения, смачиваемости и других явлений, в ртутно-сульфатных, ртутно-фосфатных, ртутно-окисных и ртутно-иодистых электродах сравнения, применяемых для измерения элект­родных потенциалов.

В 1922 г. Я. Гейровский разработал полярографический метод анализа с применением ртутного капельного электрода. Этим методом можно определять малые концентрации веществ (10-3— 10-4 моль/л), причем замена в полярографическом анализе ртути амальгамами, использование метода «амальгамной полярографии с накоплением», позволяют расширить возможности полярографии и повысить точность измерения на 3—4 порядка.

Ртуть и амальгамы успешно используют при амперометрическом и. потенцпометрическом титровании кулонометрическом ана­лизе, а также при электролизе на ртутном катоде.

Ртуть часто применяют в качестве вспомогательного вещества при изучении металлических систем. Например, с ее помощью были уточнены диаграммы состояния бинарных сплавов никель — цинк, никель — олово, железо — марганец, хром — цинк и др.Она при­меняется в качестве растворителя для получения полупроводнико­вых материалов, в частности, для выращивания при низких темпера­турах из насыщенных ртутных растворов a-олова монокристаллов серого олова. Пластинки, изготовленные из серого олова, обладают большой чувствительностью к инфракрасному излучению - позволяют обнаруживать электромагнитные волны длиною до 15 мкм.

Ртутные контакты используют для прецизионного определения удельного сопротивления кремния.


С помощью ртути изучают явления смачивания, пластификации и охрупчивания цинка, олова, меди, свинца, золота, латуни, алюминия, стали и титановых сплавов металловедении ртуть применяют для травления, для изучения диффузии.

Ее широко применяют для определения пористости активированных углей, силикагелей, керамических изделий и металлических покрытий. Известны поромегры, работающие при давлениях до 3500 aт и позволяющие определять поры диаметром до несколь­ких А.

Ртуть используют также для точной калибровки мерной посуды, бюреток, пипеток и пикнометров, для определения диаметра капиллярных трубок, в качестве компрессионной жидкости при опре­делении газов в биологических жидкостях, в газоанализаторах различных систем, волюмометрах и т. д.

Сравнительно низкое давление пара при температурах, превыша­ющих 500° С, дает возможность применять ртуть в качестве рабочего тела в энергетических установках, использующих для нагревания тепло, выделяющееся при радиоактивном распаде, а также в мощ­ных бинарных установках промышленного типа, в которых для генерации электрической энергии на первой ступени используют ртутно-паровые турбины, а на второй — турбины, работающие на водяном паре46-Б2. Коэффициент полезного действия бинарных установок превосходит КПД любых тепловых двигателей и даже таких совершенных конструкций, на двигатели внутреннего сгорания.

В ядерных реакторах, наряду с водою все шире начинают при­менять для отвода тепла жидкометаллические теплоносители, вклю­чая и ртуть. При этом значительно повышается КПД атомных установок и устраняются трудности, связанные с применением воды и водяного пара под высоким давлением.

Ртуть в качестве теплоносителя часто используют в химической промышленности, например, в процессе сульфирования нафталина, для дистилляции 2-нафтола, для разгонки смазочных масел, при получении ангидрида фталевой кислоты, при проведении крекинг-процесса и пр. В этом случае создается возможность про­водить процессы при температурах до 800° С и одновременно обеспе­чивать равномерный нагрев всей реакционной массы. Ртуть также может служить катализатором, например, при получении уксусной кислоты.

В металлургии известен способ литья по расправляемым ртутным моделям. Отдельные части модели, изготовленные из заморо­женной ртути, легко свариваются в результате соприкосновения и небольшого сдавливания, что облегчает изготовление составных и сложных моделей; при последующем плавлении моделей из твердой ртути ее объем меняется очень незначительно, что позволяет вводить весьма небольшие допуски на размеры отливок. Таким спо­собом можно получать прецизионные отливки исключительно слож­ных конфигураций и, в частности, детали для газовых турбин самолетов.

Небольшое давление паров ртути при обычных температурах было использовано также при создании различных ртутных ламп, среди которых первое место принадлежит лампам дневного света (ЛД, ЛДЦ, ЛБ, ЛХБ, ЛТБ и пр.).

Ртутные лампы низкого давления (—10-3 мм рт. ст. при 20— 40° С), изготовленные из кварцевого или увиолевого стекла, явля­ются источниками резонансного излучения с длиною волны, равной 2537 и 1849 А. Они применяются в качестве бактерицидных и люми­несцентных ламп. Бактерицидные ртутные лампы (БУВ-15, БУВ-30 и др.) работают в коротковолновой области ультрафиолетового излу­чения и применяются для стерилизации пищевых продуктов, воды, воздуха помещений и др. Люминесцентные ртутные лампы (ЭУВ-15, ЭУВ-30) работают в средневолновой части спектра ультрафиолето­вых излучений и предназначены для лечебных целей.

Ртутные лампы низкого давления используют также для изучения спектров комбинационного рассеяния, для облучения ультрафиолетовыми лучами шкал различных приборов, ручек указа­телей н других приспособлений, покрытых светосоставом.

В ртутных лампах высокого давления (давление паров ртути 0,3—12 aт) интенсивное излучение происходит в ультрафиолетовой и синефиолетовой части спектра. Они используются для светокопиро­вальных работ (ИГАР-2), для освещения производственных поме­щений, улиц и автомагистралей (ДРЛ); для физиотерапии, спектроскопии и люминесцентного анализа, в фотохимии; для ко­пировальных работ используют также ртутно-кварцевые лампы РКС-2,5.

Ртутные лампы сверхвысокого давления (давление паров ртути в них достигает десятков и даже сотен атмосфер) работают при температурах до 1000° С.

Сочетание, в таких лампах светящейся дуги с огромной световой отдачей и яркостью позволяет использовать ртутные лампы сверхвысокого давления в прожекторах, спектральных приборах и в проекционной аппаратуре. Интенсивное излучение в фиолетовой и синей части спектра таких ламп используют для фотосинтеза, в люминес­центной микроскопии, для декоративных целей (светящиеся краски) и т. д.

Для повышения интенсивности излучения в желаемой области спектра в ртутных лампах часто вместо металлической ртути исполь­зуют амальгамы цинка, кадмия и других металлов или добавляют в ртутные лампы галлоидные соединения таких металлов, как тал­лий, .натрий, индий и др.

Наряду с ртутными лампами не утратили своего значения также ртутные выпрямители электрического тока, которые не имеют себе равных по долговечности и простоте эксплуатации. Лишь в последнее время в технологии получения некоторых химических веществ, например, при производстве хлора и каустической соды, ртутные вентили начинают постепенно вытесняться кремниевыми выпрямителями, позволяющими использовать для электролиза вы­прямленный ток до 25 000 а.

Ртуть находит также применение в электронной промышленности. Пары ртути используют в газотронах (ГР1-0.25/1.5; ВГ-236, ВГ-129), применяемых в передатчиках большой и средней мощности, в газо­наполненных тиратронах и триодах. Ртуть применяют в ультразву­ковых генераторах с пьезокварцевыми датчиками, в генераторах для высокочастотного нагрева и в других электронных прибо­рах.

Ртуть широко применяют в вакуумной технике. Со времени изо­бретения Геде ртутных диффузионных насосов, усовершен­ствованных Лэнгмюром, прошло немногим более 50 лет. Эти насосы оказались незаменимыми при получении сверхвысокого вакуума (10-13 мм рт. ст.). Ртутные диффузионные насосы успешно применяют для создания вакуума в линейных ускорителях элементарных частиц, в устройствах, имитирующих условия космического пространства; в установках термоядерного син­теза, для откачки некоторых приборов, использующих фото­эмиссию.

Ртутным насосам отдают предпочтение при создании вакуума в чувствительных масспектрографах, в течеискателях, использу­ющих водород, и других приборах.

Эти многочисленные применения ртутных насосов объясняются тем, что ртуть обладает важными преимуществами по сравнению с органическим или силиконовыми маслами, используемыми в паро-масляных диффузионных насосах. Одно из этих преимуществ заклю­чается в том, что ртуть, являясь простым веществом, не разлагается на составные части и не загрязняет в такой мере стенки откачиваемых приборов, как ингредиенты жидкостей, используемых в паромасляных насосах.

Способность ртути давать амальгамы (истинные или коллоидные растворы металлов в ртути), даже несмотря на незначительную рас­творимость в ней большинства металлов, имеет исключительное значение. Б последние годы в связи с широким использованием амальгам была создана новая отрасль промышленности, названная амальгамной металлургией. С помощью амальгам осущест­вляется комплексная переработка полиметаллического сырья, полу­чают тонкоднеперсные металлические порошки, многокомпонентные сплавы заданных составов, чистые и сверхчистые металлы, содержа­ние примесей в которых не превышает 10-6—10-8 вес. %. В некото­рых случаях степень рафинирования металла оказывается настолько значительной, что существующие методы анализа не в состоянии обнаружить примесей в конечном продукте. Методом амальгамной металлургии можно получать металлы любой чистоты, в зависимости от чистоты исходных материалов — химических реактивов, воды, аппаратуры и т. д.

При нагревании амальгам до высокой температуры происходит отгонка ртути, и в результате получают металл в виде мелкодисперс­ных пирофорных порошков или компактной массы, содержащей ничтожные следы ртути. Эта особенность амальгам используется в порошковой металлургии; с помощью технологических приемов удается получать многокомпонентные сплавы любых концентраций из тугоплавких металлов или металлов, один из которых имеет низкую температуру плавления, а другой — превышающую 1500— 2000° С.

Многие металлы и сплавы, включая и такие практически нерас­творимые в ртути, как сталь, платина, титан, пермаллой и другие, при удалении с их поверхности окисной или адсорбированной пленки покрываются тонким слоем ртути. Это свойство также нашло при­менение в лабораторной практике и в промышленности. Например, его используют при получении каустической соды и хлора методом электролиза водных растворов хлоридов щелочных металлов на ртутном катоде, предварительно амальгамируя днища стальных электролизеров. Амальгамирование до настоящего времени исполь­зуют в золотодобывающей промышленности для отделения золота от породы с последующей отгонкой ртути, хотя в последнее время этот способ, имеющий многовековую историю, заменяется более прогрессивным способом цианирования.

В электрохимии и аналитической химии, при полярографиче­ском анализе часто применяют амальгамированные платиновые электроды и т. д.

 

Амальгамы щелочных и щелочноземельных металлов, цинка, алюминия и других элементов используют в препаративной химии для восстановительных реакций. Например, амальгамы щелочных металлов служат для получения водорода и каустической соды при взаимодействии с водою, для восстановления кислорода до перекиси водорода, двуокиси углерода до формиатов и оксалатов. Окислы азота, при взаимодействии с амальгамами щелочных металлов, восстанавливаются до соответствующих нитритов, окис­лы хлора — до хлоритов соответствующих щелочных металлов, двуокись серы — до гидросульфита. Известны также способы получения гидридов щелочных металлов, мышьяка и герма­ния, а также других элементов. С помощью амальгам можно восстанавливать в различных средах ноны металлов до свободных металлов, производить разделение редкоземельных элементов, а также их выделение.

Амальгамы используют также для восстановления органических соединений: для гидрирования кратных углерод-углеродных связей, для восстановления гидроксильных, карбонильных и карбок­сильных групп, для восстановления галогено- и азотсодержа­щих групп, для получения ртутноорганических соединений.


В промышленности эти амальгамы применяют для получения алкоголятов щелочных металлов, которые затем используют при изготовлении различных красителей и лечебных препара­тов — сульфамидов, барбитуратов и витаминов; для восстановления ароматических ннтросоединений до аминов, которые в свою очередь используют при изготовлении всевозможных азокрасителей; для получения шестиатомных спиртов (d-сорбита и d-маннита) путем восстановлении d-глюкозы и d-маннозы. Полученные спирты применяют при производстве специальных сортов бумаги, витамина С, эфиров, искусственных смол; амальгаму натрия исполь­зуют для получения d-рибозы, которая служит исходным продуктом при синтезе витамина В2.С помощью амальгам щелочных металлов получают салициловый альдегидов, пинакон который является исходным продуктом при синтезе диметилбутадиенового каучука, глиоксиловую кислоту используемую при синтезе душистых веществ, например, ванилина, при получении галогенсодержащих олефинов и многих других веществ.

Не менее широко применяют амальгамы для получения перекиси натрия, хлорида и гидросульфата натрия и т. д.

Содержание