Фазовая диаграмма системы As-Mn
К оглавлению: Другие диаграммы (Others phase diargams)
As-Mn (Arsenic-Manganese)
H. Okamoto
The assessed As-Mn phase diagram is adopted primarily from [11Sch], who
determined the Mn-rich liquidus boundaries. The As-rich half of the diagram is
unknown. The equilibrium phases are (1) the liquid, L; (2) the rhombohedral
terminal solid solution, (As); (3) paramagnetic NiAs-type gAsMn, existing
between the congruent melting point at 935 and 125 C; (4) MnP-type bAsMn,
existing between 125 and 45 C; (5) ferromagnetic NiAs-type aAsMn below 45 C;
(6) tetragonal As3Mn4; (7) bAs2Mn3; (8) aAs2Mn3; (9) tetragonal Cu2Sb-type
AsMn2, with a congruent melting point at 1029 C; (10) orthorhombic AsMn3; and
(11) the (dMn), (gMn), (bMn), and (aMn) terminal solid solutions. As sublimes
at 614 C under 1 bar pressure [Melt].
Ferromagnetic, antiferromagnetic, and crystallographic effects cause peculiar
transformations in AsMn. In this evaluation, three allotropic forms of AsMn (
paramagnetic NiAs type, paramagnetic MnP type, and ferromagnetic NiAs type)
are designated gAsMn, bAsMn, and aAsMn, respectively. Above and below ~40 C,
paramagnetic bAsMn and ferromagnetic aAsMn exist, respectively. [77Sel]
observed a hysteresis in the transition temperature-33 C on cooling and 44 C
on heating. The equilibrium transition temperature must lie between these two
temperatures, and it is shown at 40 C in the assessed diagram.
The Curie temperature of As3Mn4 is -147 C [49Gui]. The Curie temperature
of As2Mn3 is 0 C [60Yuz]. AsMn2 is antiferromagnetic below 300 C (
polycrystalline sample) [60Yuz] or 310 C (single crystal) [66Ish]. According
to [49Gui], the Curie temperature varies from 5 C (at 66.7 at.% Mn) to 12 C (
at 60 at.% Mn). However, the saturation magnetization vs composition data [
60Yuz] and the susceptibility vs temperature data [66Ish] suggest that AsMn2
is not ferromagnetic. The N‚el temperature of Fe2P-type high-pressure AsMn2
prepared at 65 kbar is 50 с 10 K [72Jei].
11Sch: P. Schoen, Metallurgie, 8(23), 739-741 (1911) in German.
28Oft: I. Oftedal, Z. Phys. Chem., 132(3/4), 208-216 (1928) in German.
34Fyl: K.E. Fylking, Ark. Kemi., Miner. Geol. B, 11(48), 6 (1934).
37Now: H. Nowotny and F. Halla, Z. Phys. Chem. B, 36(4), 322-324 (1937) in
German.
49Gui: C. Guillaud, Ann. Phys., 4, 689-703 (1949) in German.
51Now: H. Nowotny, R. Funk, and J. Pesl, Monatsh. Chem., 82(3), 513-519 (1951).
54Wil: B.T.M. Willis and H.P. Rooksby, Proc. Phys. Soc. (London) B, 67, 290-
296 (1954).
60Bas: Z.S. Basinski, R.O. Kornelsen, and W.B. Pearson, Trans. Indian Inst.
Met., 13, 141 (1960).
60Bra: J.B. Brauer, RADC Tech. Rep. 60-165, Rome Air Development Center,
Griffiss AFB, NY, 54 p (1960); quoted in [Elliott].
60Yuz: M. Yuzuri and M. Yamada, J. Phys. Soc. Jpn., 15(10), 1845-1850 (1960).
61Kor: R.O. Kornelsen, Can. J. Phys., 39(11), 1728-1729 (1961).
61Sch: S.A. Shchukarev, M.P. Morozova, and T.A. Stolyarova, Zh. Obshch. Khim.,
31, 1773-1777 (1961) in Russian; TR: J. Gen. Chem. USSR, 31, 1657-1661 (1961).
64Wil: R.H.Wilson and J.S. Kasper, Acta Crystallogr., 17, 95-101 (1964).
66Hol: L. Hollan, Ann. Chim. (Paris), 1(11-12), 437-448 (1966) in French.
66Ish: Y. Ishizawa and E. Hirahara, J. Phys. Soc. Jpn., 21(1), 189 (1966).
70Gro: F. Gronvold, S. Snildal, and E.F. Westrum, Jr., Acta Chem. Scand., 24(1)
, 285-298 (1970).
72Jei: W. Jeitschko and V. Johnson, Acta Crystallogr. B, 28(6), 1971-1973 (
1972).
77Han: S. Haneda, N. Kazama, Y. Yamaguchi, and H. Watanabe, J. Phys. Soc. Jpn.,
42(4), 1201-1211 (1977).
77Sel: K. Selte, A. Kjekshus, A.F. Andresen, and A. Zieba, J. Phys. Chem.
Solids, 38, 719-725 (1977).
78Zie: A. Zieba, K. Selte, A. Kjekshus, and A.F. Andresen, Acta Chem. Scand. A,
32(2), 173-177 (1978).
81Gov: G.A. Govor, Fiz. Tverd. Tela, 23(5), 1444-1447 (1981) in Russian; TR:
Sov. Phys. Solid State, 23(5), 841-842 (1981).
Published in Bull. Alloy Phase Diagrams, 10(5), Oct 1989. Complete evaluation
contains 2 figures, 3 tables, and 55 references.
1