Фазовая диаграмма системы Bi-Se
К оглавлению: Другие диаграммы (Others phase diargams)
Bi-Se (Bismuth-Selenium)
H. Okamoto
The assessed Bi-Se phase diagram is based on the review of the experimental
data [13Par, 19Tom, 60Abr, 66Oha, 75Gat, 86She]. Bi2Se3 is the most dominant
phase in the Bi-Se system. Variants, with layers of Bi and Bi2Se3 stacked in
the c direction of a hexagonal cell having simple Bi-to-Bi2Se3 ratios, appear
to form easily. About ten stacking variants are known to exist. Possibly, a
few more stable variants can be found if enough time is allowed for
equilibration, especially at low temperatures.
No solubility of Se in (Bi) was detected by lattice parameter measurements [
30Par]. However, some solubility has been reported: ~1 at.% [36Tho] and <1 at.%
[55Iva].
The Bi-rich eutectic composition is nearly 0 at.% Se [19Tom]. Therefore, the
eutectic temperature must be close to the melting point of Bi.
The composition of Bi2Se3 at the congruent melting point is 59.98 с 0.02 at.%
Se [59Off]. Bi2Se3, together with pure Bi, is the fundamental unit of various
stacking variants. Only Bi2Se3 forms when a layer of Bi is deposited on a Se
substrate [61Efe].
Combinations of Bi and Bi2Se3 layers at various ratios result in stacking
variants. Known stacking variants are shown as line compounds in the assessed
diagram. Dashed lines show the possible existence of stacking variants with
relatively simple structures.
Based on thermal analysis data, [60Abr] proposed a solid solution range for
BiSe from 41.3 to 55.5 at.% Se. [62God] proposed an even wider continuous
range from 33.3 to 60 at.% Se, based on X-ray data, and a narrower range from
38.9 to 60 at.% Se was given in [65God]. [75Gat] and [86She] proposed a
diagram with the BiSe solid solution phase ranging from ~46 to 56 at.% Se and
from 42.5 to 54.5 at.% Se, respectively. A series of stable stacking variants
and disordered stacking may have caused the appearance of continuous solution.
The peritectic melting point of this continuous phase was found to be at 55.5
at.% Se and 607 C [60Abr], 56 at.% Se and 609 C [75Gat], or 54.5 at.% Se and
606 C [86She]. This point is shown in the assessed diagram as the peritectic
melting of Bi4Se5 (55.6 at.% Se).
[19Tom] observed thermal effects in cooling curves at 404 to 435 C and
attributed them to a polymorphic transition in BiSe. Because no polymorphism
is known in BiSe at 1 bar pressure, the thermal effects may be due to
peritectic formation of some stacking variants.
The Bi-rich side of the liquid miscibility gap is based on the vapor pressure
data of [66Oha]. Alloys formed by vapor quenching in the monotectic
composition range contain more than one amorphous phase, corresponding to the
monotectic phase relationship [68Sch].
The Se-rich eutectic composition is nearly 100 at.% Se [19Tom]. Therefore, the
eutectic temperature must be nearly identical to the melting point of Bi. The
solubility of Bi in (Se) must be very small, because the Se-rich eutectic
composition is nearly 100 at.% Se.
[54Sem] and [72Dhe] observed NaCl-type BiSe in a vapor deposited film.
Annealing of high-pressure Bi2Se3III at 50 C and 1 atm for 1 h resulted in a
transition to a new metastable phase, Bi2Se3IIIa [73Ata].
[64Ver] found an irreversible phase transition of Bi2Se3 to Sb2S3 (bismuthite)
type Bi2Se3III at high pressure and temperatures (120 kbar at 750 C and 65
kbar at 800 C). [73Ata] proposed a nonequilibrium pressure-temperature
diagram of Bi2Se3 for pressures up to 110 kbar, in which the Sb2S3-type phase
is named Bi2Se3III. Bi2Se3II and Bi2Se3IV exist between Bi2Se3 and Bi2Se3III
and at higher pressure than Bi2Se3III in the pressure-temperature diagram,
respectively. Bi2Se3II was shown to exist above ~300 C at 1 bar, although no
other reports indicated polymorphic transformation at 1 atm.
Because of insufficient information on Bi2Se3II in [73Ata], the Bi2Se3III and
Bi2Se3IV in [73Ata] are designated Bi2Se3II and Bi2Se3III, respectively, in
this evaluation. Bi2Se3 becomes metallic at pressures above ~100 kbar at room
temperature [64Its]. [65Sil] synthesized a new compound, BiSe2, at 45 kbar and
1280 C.
13Par: N. Parravano, Gazz. Chim. Ital., 43(1), 201-209 (1913) in Italian.
19Tom: N. Tomoshige, Mem. Coll. Sci. Kyoto Imp. Univ., 4, 55-60 (1919).
30Par: N. Parravano and V. Caglioti, Gazz. Chim. Ital., 60, 923-933 (1930) in
Italian.
36Tho: N. Thompson, Proc. R. Soc. (London) A, 155, 111-123 (1936).
53Sch: K. Schubert, K. Anderko, M. Kluge, H. Beeskow, M. Ilschner, E. Dorre,
and P. Esslinger, Naturwissenschaften, 40, 269 (1953) in German.
54Sem: S.A. Semiletov, Tr. Inst. Krist. Akad. Nauk SSSR, 10, 76-83 (1954) in
Russian.
55Iva: G.A. Ivanov and A.R. Regel, Zh. Tekh. Fiz., 25, 39-48 (1955).
59Off: G. Offergeld and J. Van Cakenberghe, Nature, 184(4), 185-186 (1959).
59Vor: A. Vorma, Geologi, 11, 11 (1959).
60Abr: N.Kh. Abrikosov, V.F. Bankina, and K.F. Kharitonovich, Zh. Neorg. Khim.,
5(9), 2011-2016 (1960) in Russian; TR: Russ. J. Inorg. Chem., 5(9), 978-982 (
1960).
60Wie: J.R. Wiese and L. Muldawer, Phys. Chem. Solids, 15(1/2), 13-16 (1960).
61Efe: G.A. Efendiev and R.B. Shafizade, Fiz. Tverd. Tela, 3(9), 2564-2566 (
1961) in Russian; TR: Sov. Phys. Solid State, 3(9), 1864-1866 (1962).
62God: A.A. Godovikov, Zh. Strukt. Khim., 3(3), 44-50 (1962) in Russian; TR: J.
Struct. Chem. USSR, 3(3), 38-43 (1962).
62Yar: E.I. Yarembash and E.S. Vigileva, Zh. Neorg. Khim., 7(12), 2752-2755 (
1962) in Russian; TR: Russ. J. Inorg. Chem., 7(12), 1435-1437 (1962).
63Kuz: V.G. Kuznetsov and K.K. Palkina, Zh. Neorg. Khim., 8, 1204-1218 (1963)
in Russian; TR: Russ. J. Inorg. Chem., 8, 624-632 (1963).
63Lan: S.A. Langston and B. Lewis, J. Phys. Chem. Solids, 24, 1387-1389 (1963).
63Nak: S. Nakajima, J. Phys. Chem. Solids, 24(3), 479-485 (1963).
64Gob: H. Gobrecht, K.E. Boeters, and G. Pantzer, Z. Phys., 177, 68-83 (1964)
in German.
64Its: E.S. Itskevich, E.Ya. Atabaeva, and S.V. Popova, Fiz. Tverd. Tela, 6(6),
1765-1768 (1964) in Russian; TR: Sov. Phys. Solid State, 6(6), 1385-1387 (
1964).
64Sta: M.M. Stasova, Zh. Strukt. Khim., 5(5), 793-794 (1964) in Russian; TR: J.
Struct. Chem. USSR, 5(5), 731-732 (1964).
64Ver: L.F. Vereshchagin, E.S. Itskevich, E.Ya. Atabaeva, and S.V. Popova, Fiz.
Tverd. Tela, 6(7), 2223-2225 (1964) in Russian; TR: Sov. Phys. Solid State, 6(
7), 1763-1764 (1965).
65Sil: M.S. Silverman, Inorg. Chem., 4(4), 587-588 (1965).
65Sta: M.M. Stasova, Izv. Akad. Nauk SSSR, Neorg. Mater., 1(12), 2134-2137 (
1965) in Russian; TR: Inorg. Mater. USSR, 1(2), 1930-1932 (1965).
66Oha: T. Ohashi, Z. Kozuka, and J. Moriyama, Nippon Kinzoku Gakkai-shi, 30(8),
785-788 (1966) in Japanese.
67Sta: M.M. Stasova and O.G. Karpinskii, Zh. Strukt. Khim., 8(1), 85-88 (1967)
in Russian; TR: J. Struct. Chem., 8(1), 69-72 (1967).
68Bon: Z. Boncheva-Mladenova, A.S. Pashinkin, and A.V. Novoselova, Izv. Akad.
Nauk SSSR, Neorg. Mater., 4(7), 1027-1031 (1968) in Russian; TR: Inorg. Mater.
USSR, 4(7), 904-907 (1968).
68Sch: J.C. Schottmiller, D.L. Bowman, and C. Wood, J. Appl. Phys., 39(3),
1663-1669 (1968).
70Ima: P.M. Imamov and S.A. Semiltov, Kristallografiya, 15(5), 972-978 (1970)
in Russian; TR: Sov. Phys. Crystallogr., 15(5), 845-850 (1971).
72Dhe: N.G. Dhere and A. Goswami, J. Vacuum Sci. Technol., 9(1), 523-527 (1972)
.
73Ata: E.Ya. Atabaeva, N.A. Bendeliani, and S.V. Popova, Fiz. Tverd. Tela, 15(
12), 3508-3512 (1973) in Russian; TR: Sov. Phys. Solid State, 15(12), 2346-
2348 (1974).
75Boe: V.F. Boechko and V.I. Isarev, Izv. Akad. Nauk SSSR, Neorg. Mater., 11(8)
, 1510-1511 (1975) in Russian; TR: Inorg. Mater. USSR, 11(8), 1288-1290 (1975).
75Gat: B. Gather and R. Blachnik, Z. Metallkd., 66(6), 356-359 (1975) in
German.
86She: A.A. Sher, I.P. Odin, and A.V. Novolselova, Zh. Neorg. Khim., 31(3),
764-767 (1986) in Russian; TR: Russ. J. Inorg. Chem., 31(3), 435-437 (1986).
Submitted to the APD Program. Complete evaluation contains 1 figure, 4 tables,
and 60 references.
1