Фазовая диаграмма системы Fe-Mn

К оглавлению: Другие диаграммы (Others phase diargams)

Fe-Mn

Fe-Mn (Iron-Manganese) H. Okamoto The assessed phase diagram for the Fe-Mn system is taken primarily from the thermodynamic modeling of [87Hua], which represents scattered experimental phase boundary data quite well, with review of the data of [05Lev], [15Rum], [ 30Ish], [33Gay], [43Tro], [51Iso], [51Yos], [52Vog], [57Hel], [64Hum], [67Hil], and [72Pre]. The equilibrium phases of the Fe-Mn system are (1) the liquid, L; (2) the bcc terminal solid solution, (dFe); (3) the fcc continuous solid solution, (gFe,gMn); (4) the bcc terminal solid solution, (aFe); (5) the bcc terminal solid solution, (dMn); (6) the (bMn) terminal solid solution; and (7) the (aMn) terminal solid solution. The martensitic a› phase observed below ~16 at.% Mn has a structure similar to (aFe). Another martensitic phase, cph e, occurs between ~12 and 30 at.% Mn. [62Sok] indicated ordered structures of the approximate compositions Fe2Mn and FeMn, with maximum temperatures both at ~800 C. No further reports are available. On cooling (gFe,gMn) under normal conditions (not an extended annealing), martensitic transformations either to a› or e occur, depending on the alloy composition. The transition temperatures reported by many investigators strongly disagree. a› is essentially an extended metastable solid solution of bcc (aFe), with a slight tetragonal deformation. e is an extended metastable solid solution of high-pressure, cph (eFe). Both a› and e transform back to ( gFe,gMn) on heating, and the transformations show significant hysteresis. In a narrow composition range, e transforms to a› on further cooling. At lower temperatures, fcc (gFe,gMn) becomes tetragonal g›. The transition temperature, however, is questionable. It is the same as the N‚el temperature (TN) (~200 C) [73Rav] or much lower (<-50 C for ~10 to 85 at.% Mn) [76Fro]. The latter conflicts with the well-established (gFe,gMn) = e martensitic transformation below 30 at.% Mn. Pure bcc aFe transforms to cph eFe under 12.6 GPa pressure at room temperature [82Swa]. The transition pressure decreases with increasing Mn content: 5.5 GPa at 11 at.% Mn [66Lor] and 3.5 GPa at 14 at.% Mn [71Gil]. High pressures lower the temperatures of the (aFe) + (gFe,gMn) boundaries [63Cla]. [67Ers] estimated the boundaries up to 5 GPa partly based on the thermodynamic expression proposed by [49Fis] and on the pressure dependence of the transition temperature of pure Fe given by [64Ers]. The cph e phase observed in the martensitic transformation from (gFe, gMn) is the same as the high-pressure phase (eFe) [64Gen]. High pressures increase the (gFe,gMn) = e transition temperatures at a rate of about 50 C/GPa [67Ers] (measured up to ~2.5 GPa). The (TN) of pure gFe is between -206 and -183 C [75Ett]. The composition dependence of TN of (gFe,gMn) was measured by many investigators. As Mn content increases, TN increases to about 230 C at 50 at.% Mn. TN is about 200 C for more than 50 at.% Mn. TN of a 30 at.% Mn alloy decreases with increasing pressure at a rate of -2.5 x 108 C/Pa up to 3.3 x 108 Pa [66Fuj]. The Curie temperature of (aFe) decreases at the rate 15 C/at.% Mn [36Fal]. The Curie point of pure aFe is 770 C [82Swa]. The TN of aMn is 100 C [82Rhy]. When Fe is added to aMn, TN initially increases at a rate ~14 C/at.% Fe [73Wil, 76Wil] and gradually reaches a saturated temperature of ~230 C at ~40 at.% Fe [79Kho, 86Nak]. According to [63Kim] and [65Koh], e becomes antiferromagnetic at low temperatures. The TN is -43 C at 17.8 to 28.6 at.% Mn [71Ohn] or -45 с 1.5 C at 18 at.% Mn [73Bog]. 05Lev: M. Levin and G. Tammann, Z. Anorg. Allg. Chem., 47(1), 136-144 (1905) in German. 15Rum: G. Rumelin and K. Fick, Ferrum, 12(4), 41-44 (1914-1915) in German. 29Nis: Z. Nishiyama, Sci. Rep. Tohoku Univ., 18, 359-400 (1929). 29Sch: W. Schmidt, Arch. Eisenhuttenwes., 3(4), 293-300 (1929) in German. 30Ish: T. Ishiwara, Sci. Rep. Tohoku Univ., 19, 499-519 (1930). 30Ohm: E. Ohman, Z. Phys. Chem. B, 8(1/2), 81-100 (1930) in German. 30Osa: A. Osawa, Sci. Rep. Tohoku Univ., 19, 247-264 (1930). 32Gen: M. Gensamer, J.F. Eckel, and F.M. Walters, Trans. ASST, 19(7), 599-607 ( 1931-1932). 33Gay: M.L.V. Gayler, J. Iron Steel Inst., 128, 293-340 (1933). 33Wai: C. Wainwright, appendix to [33Gay] (1933). 33Wel: C. Wells and F.M. Walters, J. Iron Steel Inst., 128, 345-349 (1933). 35Wal: F.M. Walters and C. Wells, Trans. ASM, 23(9), 727-750 (1935). 36Fal: M. Fallot, Ann. Phys. (Paris), 6, 305-387 (1936) in French. 39Kuz: V.G. Kuznetzov and N.N. Evseeva, Zh. Prikl. Khim., 12, 406-414 (1939) in Russian. 43Tro: A.R. Troiano and F.T. McGuire, Trans. ASM, 31(6), 340-359 (1943). 49Fis: I.C. Fisher, J. Met., 1(10), 688-690 (1949); Metall. Trans., 185(10), 688-690 (1949). 50Gul: A.P. Guljaev and E.F. Trusove, Zh. Tekh. Fiz., 20, 66-71 (1950) in Russian; Struct. Rep., 13, 77 (1950). 51Iso: M. Isobe, Sci. Rep. Res. Inst. Tohoku Univ., A3, 151-154 (1951). 51Yos: H. Yoshisaki, Sci. Rep. Res. Inst. Tohoku Univ., A3, 137-150 (1951). 51Zwi: U. Zwicker, Z. Metallkd., 42, 246-252 (1951) in German. 52Par1: J.G. Parr, J. Iron Steel Inst., 171(6), 137-141 (1952). 52Par2: J.G. Parr, Acta Crystallogr., 5, 842-843 (1952). 52Vog: R. Vogel and J. Berak, Arch. EisenhЃttenwes., 23(5/6), 217-223 (1952) in German. 55Sut: A.L. Sutton and W. Hume-Rothery, Philos. Mag., 46, 1295-1309 (1955). 57Hel: A. Hellawell and W. Hume-Rothery, Philos. Trans. R. Soc. London, 249, 417-459 (1957). 60Var: I.Kh. Varivoda and D.G. Kurileck, Tr. Dnepropetr. Khim.-Tekhnol. Inst., (10), 3-7 (1960); quoted in [Elliott]. 62Sok: E.M. Sokolovskaya, A.T. Grigorev, and Yu.F. Altunin, Zh. Neorg. Khim., 7(12), 2809-2811 (1962) in Russian; TR: Russ. J. Inorg. Chem., 7(12), 1464- 1466 (1962). 63Cla: W.F. Claussen, Tech. Rep. ASD-TDR-62-479, Pt. II (AD 416723), 38 p ( 1963); quoted in [Shunk]. 63Kim: C. Kimball, W.D. Gerber, and A. Arrott, J. Appl. Phys., 34(4(2)), 1064- 1065 (1963). 64Ers: T.P. Ershova, E.G. Ponyatovskii, Fiz. Met. Metalloved., 17(4), 584 ( 1964) in Russian; TR: Phys. Met. Metallogr., 17(4), (1964). 64Gen: Yu.S. Genshaft, Fiz. Met. Metalloved., 18(1), 116-120 (1964) in Russian; TR: Phys. Met. Metallogr., 18(1), 107-110 (1964). 64Hum: W. Hume-Rothery and R.A. Buckley, J. Iron Steel Inst., 202(6), 534 ( 1964). 65Koh: R. Kohlhaas, Arch. EisenhЃttenwes., 36(6), 437-448 (1965) in German. 66Fuj: H. Fujimori, J. Phys. Soc. Jpn., 21(10), 1860-1865 (1966). 66Lor: T.R. Loree, R.H. Warnes, E.G. Zukas, and C.M. Fowler, Science, 153, 1277-1278 (1966). 67Ers: T.P. Ershova and E.G. Ponyatovskiy, Izv. Akad. Nauk SSSR, Met., (4), 156-167 (1967) in Russian; TR: Russ. Metall., (4), 81-89 (1967). 67Hil: M. Hillert, T. Wada, and H. Wada, J. Iron Steel Inst., 205(5), 539-546 ( 1967). 71End: Y. Endoh and Y. Ishikawa, J. Phys. Soc. Jpn., 30(6), 1614-1627 (1971). 71Gil: P.M. Giles and R. Marder, Metall. Trans., 2(5), 1371-1378 (1971). 71Ohn: H. Ohno and M. Makita, J. Phys. Soc. Jpn., 31(1), 102-108 (1971). 72Pre: B. Predel and W. Gust, Arch. EisenhЃttenwes., 43(9), 721-726 (1972) in German. 73Bog: I.N. Bogachev and L.D. Chumakova, Fiz. Met. Metalloved., 36(1), 209-210 (1973) in Russian; TR: Phys. Met. Metallogr., 36(1), 206-207 (1973). 73Rav: M.P. Ravdel' and O.I. Evdokimova, Izv. Akad. Nauk SSSR, Met., (5), 204- 210 (1973) in Russian; TR: Russ. Metall., (5), 140-145 (1973). 73Wil: W. Williams, Jr. and J.L. Stanford, Phys. Rev. B, 7(7), 3244-3245 (1973) . 74Bog: I.N. Bogachev, V.D. Kiabl'nik, T.L. Frolova, and L.D. Chumakova, Fiz. Met. Metalloved., 37(5), 966-972 (1974) in Russian; TR: Phys. Met. Metallogr., 37(5), 62-67 (1974). 75Ett: H.H. Ettwig and W. Pepperhoff, Arch. EisenhЃttenwes., 46(10), 667-668 ( 1975) in German. 76Fro: T.L. Frolova, V.D. Kibalnik, I.N. Bogachev, Dokl. Akad. Nauk SSSR, 230( 3), 582-585 (1976) in Russian. 76Wil: W. Williams, Jr. and J.L. Stanford, J. Magn. Magn. Mater., 1(4), 271- 285 (1976). 79Cha: G.A. Charushnikova and L.D. Chumakova, Fiz. Met. Metalloved., 48(5), 951-956 (1979) in Russian; TR: Phys. Met. Metallogr., 48(5), 43-49 (1981). 79Kho: O.A. Khomenko, I.F. Khil'kevich, G.Ye. Zvigintseva, L.A. Vaganova, and M.M. Belenkova, Fiz. Met. Metalloved., 47(2), 431-434 (1979) in Russian; TR: Phys. Met. Metallogr., 47(2), 180-182 (1980). 82Rhy: J.J. Rhyne, Bull. Alloy Phase Diagrams, 3(3), 401-402 (1982). 82Swa: L.J. Swartzendruber, Bull. Alloy Phase Diagrams, 3(2), 161-165 (1982). 86Nak: Y. Nakai, N. Yamamoto, N. Kunitomi, and N. Achiwa, J. Phys. Soc. Jpn., 55(4), 1188-1195 (1986). 87Hua: W.M. Huang, Calphad, 11(2), 183-186 (1987). Submitted to the APD Program. Complete evaluation contains 5 figures, 7 tables, and 177 references. Special Points of the Fe-Mn System