Фазовая диаграмма системы Fe-P

К оглавлению: Другие диаграммы (Others phase diargams)

Fe-P

Fe-P (Iron-Phosphorus) H. Okamoto The assessed phase diagram for the Fe-P system is based on the experimental data of [27Hau], [63Wac], [70Hof], [79Ko], and [81Sch]. [79Ko (81Tak)] calculated the (aFe) solvus including the ferromagnetic effect of aFe, in which the Gibbs energy functions of related phases were derived considering the experimental phase boundary data. The assessed solvus is based on this calculated result. The assessed g loop is based on the thermodynamic calculation of [62Lor]. The model of [62Lor] was improved by high-temperature calorimetric data, but the calculated boundaries essentially were unchanged [ 81Sch]. The equilibrium phases are: (1) the liquid, L; (2) the fcc terminal solid solution, (gFe); (3) the bcc terminal solid solution, (aFe); (4) Ni3P-type tetragonal Fe3P; (5) hexagonal Fe2P; (6) orthorhombic FeP; (7) FeS2-type orthorhombic FeP2; (8) monoclinic FeP4; and (9) the terminal phase, (P). The P- rich side of the phase diagram is unknown. The assessed maximum solubility of P in (gFe) is 0.56 at.% at ~1150 C [62Lor]. The solid solubility of P in (aFe) decreases as the temperature is lowered [ 00Ste, 08Ger, 15Ste, 18Hau, 18Ste, 31Kos, 31Vog]. The maximum solubility of P in (aFe) is about 5 at.% at the L = (aFe) + Fe3P eutectic temperature. The equilibrium solubility of P in (aFe) at room temperature is essentially zero. The metastable solubility limits of P in (gFe) are 1.9, 1.1, and 0.6 at.% at 100, 900, and 800 C, respectively, according to extrapolation from higher- order systems such as Fe-P-C and Fe-P-Ni [65Kan]. The metastable, orthorhombic preprecipitate Fe4+P forms before Fe3P precipitates in (aFe) [61Hor]. The formation of Fe3P is suppressed easily by fast cooling [15Ste, 29Vog]. Amorphous Fe-P alloys are formed at ~20 at.% P [76Tak], corresponding to the eutectic point of the Fe-P system [83Pal]. [86Miy] measured the magnetic, dilatometric, and structural changes during the crystallization process of amorphous Fe-P alloys with 13 to 24 at.% P. No metastable structures were observed. FeP2 does not transform to pyrite (FeS2) structure at high pressures [68Don], but transforms to a Co2Si-type orthorhombic structure at 800 C and 30 kbar [ 76Sen]. Orthorhombic FeP4 was synthesized from the elements at 1100 C and 60 kbar [78Sug]. Because the Curie temperature (TC) of pure aFe was not well defined in earlier works, comparison of measured TC in alloys is ambiguous. The assessed TC of pure aFe is 770 C [82Swa]. The TC of Fe3P is 440 с 5 [09Lec] or 443 C [62Mey]. Because the TC of Fe2P and FeP measured by these authors is very much higher than that of more recent investigators, reinvestigation of TC of Fe3P may be needed. The TC of Fe2P is 80 [09Lec], -7 [62Mey], -59 [75Wap], -73 [77Fuj], -64 [80Fuj] , or -68 C [85Kad]. The considerable disagreement in TC may be due to inhomogeneity or off-stoichiometry of the specimens used by the earlier investigators. TC decreases rapidly on the P-rich side of the stoichiometry due to vacancies on the Fe site [75Wap, 78Lun]. At pressures higher than 5 kbar, a metamagnetic phase [81Kad] is observed; the metamagnetic phase shows a two-step magnetization phenomenon caused by two different types of electron interactions [85Kad]. Although [62Mey] observed the TC of FeP at -58 C, other investigators found FeP not to be ferromagnetic. Consistent with the M”ssbauer spectra anomaly observed by [67Bai], [69Bel] found occurrence of antiferromagnetism at about 120 K (-153 C). The TC of amorphous Fe-P alloys with 13 to 27 at.% P is nearly constant (~290 C) [85Hul]. 00Ste: J.E. Stead, J. Iron Steel Inst., 58, 60-155 (1900). 08Ger: E. Gercke, Metallurgie, 5(20), 604-609 (1908) in German. 09Lec: H. Le Chatelier and S. Wologdine, Compt. Rend., 149, 709-714 (1909) in French. 15Ste: J.E. Stead, J. Iron Steel Inst., 91, 140-198 (1915). 18Hau: J.L. Haughton and D. Hanson, correspondence to [18Ste], J. Iron Steel Inst., 97, 413-414 (1918). 18Ste: J.E. Stead, J. Iron Steel Inst., 97, 389-412 (1918). 27Hau: J.L. Haughton, J. Iron Steel Inst., 115, 417-433 (1927). 28Hag: G. Hagg, Z. Krist., 68, 470-471 (1928) in German. 29Vog: R. Vogel, Arch. EisenhЃttenwes., 3(5), 369-371 (1929-1930) in German. 31Kos: W. Koster, Arch. EisenhЃttenwes., 4(12), 609-611 (1930-1931) in German. 31Vog: R. Vogel and H. Baur, Arch. Eisenhuttenwes., 5(5), 269-281 (1931) in German. 34Fyl: K.E. Fylking, Arkv. Kemi, Mineral. Geol. B, 11(48), 6 p (1934). 34Mei: K. Meisel, Z. Anorg. Allg. Chem., 218(4), 360-364 (1934) in German. 58Sve: V.N. Svechnikov, V.M. Pan, and A.K. Shurin, Fiz. Met. Metalloved., 6(4), 662-664 (1958) in Russian; TR: Phys. Met. Metallogr., 6(4), 80-82 (1958). 59Run: S. Rundqvist and F. Jellinek, Acta Chem. Scand., 13(3), 425-432 (1959). 61Hor: E. Hornbogen, Trans. ASM, 53, 569-589 (1961). 62Lor: K. Lorenz and H. Fabritius, Arch. EisenhЃttenwes., 33(4), 269-275 (1962) in German. 62Mey: A.J.P. Meyer and M.C. Cadeville, J. Phys. Soc. Jpn., 17 (Suppl. B-I), 223-225 (1962). 62Run1: S. Rundqvist, Acta Chem. Scand., 16(1), 1-19 (1962). 62Run2: S. Rundqvist, Acta Chem. Scand., 16(2), 287-292 (1962). 63Wac: E. Wachtel, G. Urbain, and E. Ubelacker, Compt. Rend., 257, 2470-2472 ( 1963) in French. 65Kan: H. Kaneko, T. Nishizawa, K. Tamaki, and A. Tanifuji, Nippon Kinzoku Gakkai-shi, 29(2), 166-170 (1965) in Japanese. 67Bai: R.E. Bailey and J.F. Duncan, Inorg. Chem., 6(8), 1444-1447 (1967). 67Fas: E.J. Fasiska and L. Zwell, Trans. AIME, 239(6), 924-925 (1967). 68Bon: J. Bonnert, R. Fruchart, and A. Roger, Phys. Lett. A, 26(11), 536-537 ( 1968) in French. 68Don: P.C. Donohue, T.A. Bither, and H.S. Young, Inorg. Chem., 7, 998-1001 ( 1968). 68Hol: H. Holseth and A. Kjekshus, Acta Chem. Scand., 22(10), 3284-3292 (1968). 69Bel: D. Bellavance, M. Vlasse, B. Morris, and A. Wold, J. Solid State Chem., 1(1), 82-87 (1969). 69Dah: E. Dahl, Acta Chem. Scand., 23(8), 2677-2684 (1969). 69Fru: R. Fruchart, A. Roger, and J.P. Senateur, J. Appl. Phys., 40(3), 1250- 1257 (1969). 70Hof: H.P. Hofmann, K. Lohberg, and W. Reif, Arch. EisenhЃttenwes., 41(10), 975-982 (1970) in German. 72Sel: K. Selte and A. Kjekshus, Acta Chem. Scand., 26(3), 1276-1277 (1972). 73Car: B. Carlsson, M. Golin, and S. Rundqvist, J. Solid State Chem., 8(1), 57- 67 (1973). 75Wap: R. Wappling, L. Haggstrom, T. Ericsson, S. Devanarayanan, E. Karlsson, B. Carlsson, and S. Rundqvist, J. Solid State Chem., 13(3), 258-271 (1975). 76Sen: J.P. Senateur, A. Rouault, R. Fruchart, J.J. Capponi, and M. Perroux, Mater. Res. Bull., 11(6), 631-635 (1976) in French. 76Tak: S. Takayama, J. Mater. Sci., 11(1), 164-185 (1976). 77Fuj: H. Fujii, T. Kokabe, T. Kamigaichi, and T. Okamoto, J. Phys. Soc. Jpn., 43(1), 41-46 (1977). 78Jei: W. Jeitschko and D.J. Braun, Acta Crystallogr. B, 34, 3196-3201 (1978). 78Lun: L. Lundgren, G. Tarmohamed, O. Beckman, B. Carlsson, and S. Rundqvist, Phys. Scr., 17, 39-48 (1978). 78Sug: M. Sugitani, N. Kinomura, and M. Koizumi, J. Solid State Chem., 26(2), 195-201 (1978). 79Ko: M. Ko and T. Nishizawa, J. Jpn. Inst. Met., 43(2), 118-126 (1979) in Japanese. 80Fuj: H. Fujiwara and T. Okamoto, J. Phys. Soc. Jpn., 49(1), 419-420 (1980). 81Kad: H. Kadomatsu, K. Tohma, H. Fujii, T. Okamoto, and H. Fujiwara, Phys. Lett. A, 84(8), 442-444 (1981). 81Sch: E. Schurmann, H.P. Kaiser, and U. Hensgen, Arch. EisenhЃttenwes., 52(2), 51-55 (1981) in German. 81Tak: T. Takayama, M.Y. Wey, and T. Nishizawa, Trans. Jpn. Inst. Met., 22(5), 315-325 (1981). 82Swa: L.J. Swartzendruber, Bull. Alloy Phase Diagrams, 3(2), 161-165 (1982). 83Pal: L.S. Palatnik and I.I. Fal'ko, Dokl. Akad. Nauk SSSR, 270(6), 1380-1384 (1983) in Russian; TR: Sov. Phys Dokl., 28(6), 496-498 (1983). 85Hul: K. Huller, G. Dietz, R. Hausmann, and K. Kolpin, J. Magn. Magn. Mater., 53(1-2), 103-110 (1985). 85Kad: H. Kadomatsu, M. Isoda, K. Tohma, H. Fujii, T. Okamoto, and H. Fujiwara, J. Phys. Soc. Jpn., 54(7), 2690-2699 (1985). 86Miy: T. Miyazaki, X.B. Yang, and M. Takahashi, J. Magn. Magn. Mater., 60(2-3) , 204-210 (1986). Published in Bull. Alloy Phase Diagrams, 11(4), Aug 1990. Complete evaluation contains 3 figures, 3 tables, and 88 references. Special Points of the Fe-P System