Фазовая диаграмма системы Fe-Zr
К оглавлению: Другие диаграммы (Others phase diargams)
Fe-Zr (Iron-Zirconium)
D. Arias and J.P. Abriata
The assessed equilibrium Zr-Fe phase diagram is based primarily on the work of
[51Hay], [62Sve], [63Sve], [81Mal], [82Mal], [85Aub], and [85Stu]. The
equilibrium phases are (1) the liquid, L; (2) the bcc terminal solid solution,
(bZr), in which Fe has a maximum solubility of approximately 6.5 at.% at 928
C; (3) the cph terminal solid solution, (aZr), which shows a maximum
solubility of 0.03 at.% Fe at 730 C; (4) the four intermediate phases Zr3Fe,
Zr2Fe, ZrFe2, and ZrFe3, with the BRe3-, Al2Cu-, Cu2Mg-, and Mn23Th6-type
structures, respectively. ZrFe2 is stable from 66.0 to 72.9 at.% Fe, melts
congruently at the stoichiometric composition at 1673 C, and has a
composition-dependent ferromagnetic transition from 300 to 470 C; (5) the
high-temperature bcc terminal solid solution, (dFe), in which Zr has a maximum
solubility of ~4.5 at.% at 1357 C; (6) the fcc terminal solid solution, (gFe),
which shows a maximum solubility of ~0.7 at.% Zr at 1337 C; and (7) the low-
temperature bcc terminal solid solution, (aFe), for which the maximum
solubility of Zr is estimated to be ~0.05 at.% at 925 C.
The assessed phase diagram differs from those of [Hansen], [Elliott], [Shunk],
[Metals], and [76Kub] in various details of the intermediate phases and of the
invariant reactions. All evaluated temperatures given in this work correspond
to the 1968 International Practical Temperature Scale.
No experimental data exist for the (bZr) + L two-phase field, and consequently,
the corresponding boundaries shown in the assessed diagram are merely
tentative.
[82Mal] found that after quenching from the temperature range 800 to 875 C,
alloys with compositions between 2 and 20 at.% Fe contained w phase
precipitates. The w phase was also observed by [83Bus] during the first step
in the crystallization process of Zr-Fe amorphous alloys.
Amorphous Zr-Fe alloys have been produced from 20 to 93 at.% Fe [80Mas]. Zr-
rich amorphous alloys up to about 30 at.% Fe show superconductivity, whereas
alloys with Fe content higher than 35 at.% are ferromagnetic. The
superconducting properties of Zr-Fe alloys depend significantly on their
composition.
[83Bus] observed an orthorhombic modification of Zr3Fe, denoted Zr3Fe(m),
which appears during the crystallization process of an amorphous Zr-20 at.% Fe
alloy.
[85Alt] found that amorphous Zr-Fe alloys from 24.0 to 42.5 at.% Fe transform
into the metastable cubic Fe3W3C-type structure by means of a crystallization
process that could be explosive. Subsequently, the samples evolve into the
structure indicated by the assessed phase diagram.
Studies of the magnetic properties of stoichiometric ZrFe2 indicate a Curie
temperature of 630 с 30 K [63Sve]. According to [63Sve], the rate of change of
Curie temperature with composition is 25 K/at.% Fe. ZrFe3 is ferromagnetic
below ~550 K [63Sve].
Zr-Fe amorphous alloys from 35 to 93 at.% Fe were reported to be
ferromagnetic [85Mor]. For these alloys, the Curie temperature generally
increases with increasing Fe content.
51Hay: E.T. Hayes, A.H. Robertson, and W.L. O'Brien, Trans. ASM, 43, 888-897 (
1951).
62Sve: V.N. Svechnikov and A.Ts. Spektor, Proc. Acad. Sci. USSR, Chem Sect.,
142(3), 231-233 (1962).
63Sve: V.N. Svechnikov, V.M. Pan, and A.Ts. Spektor, Russ. J. Inorg. Chem., 8(
9), 1106-1109 (1963).
65Kri: P.I. Kripyakevich, V.S. Protasov, and E.E. Cherkashin, Zh. Neorg. Khim.,
10, 288 (1965).
66Kuz: Yu.B. Ku'zma, V.Ya Markiv, Yu.V. Voroshilov, and R.V. Skolozdra, Inorg.
Mater., 2, 259-263 (1966).
67Bru: W. Bruckner, K. Kleinstuck, and G.E.R. Schulze, Phys. Status Solidi, 23,
475-480 (1967).
70Fis: W.A. Fischer, K. Lorenz, H. Fabritius, and D. Schlegel, Arch.
EisenhЃttenwes., 41(5), 489-498 (1970) in German.
72Hav: E.E. Havinga, H. Damsma, and P. Hokkeling, J. Less-Common Met., 27, 169-
186 (1972).
72Pet: V.V. Petkov and E.E. Cherkashin, Dokl. Akad. Nauk Ukr. SSR, 2(3), 276-
279 (1972) in Russian.
73Gus: L.N. Guseva and T.O. Malakhova, Dokl.Akad. Nauk Ukr. SSR, Metallofiz.,
46, 111-113 (1973) in Russian.
76Kub: O. Kubaschewski-von Goldbeck, Zirconium: Physico-Chemical Properties of
Its Compounds and Alloys, O. Kubaschewski, Ed., Atomic Energy Review, Special
Issue No. 6. IAEA, Vienna (1976).
77Mur: Y. Muraoka, M. Shiga, and Y. Nakamura, Phys. Status Solidi (a), 42, 369-
374 (1977).
79Mal: T.O. Malakhova, Splavy At. Energ., O.S. Ivanov, Ed., Izv. Nauka, Moscow,
123-130 (1979) in Russian.
80Mas: T. Masumoto, S. Ohnuma, K. Shirakawa, M. Nose, and K. Kobayashi, J.
Phys. C, 8(8), 686-689 (1986).
81Bus: K.H.J. Buschow, J. Less-Common Met., 79, 243-253 (1981).
81Mal: T.O. Malakhova and Z.M. Alekseeyeva, J. Less-Common Met., 81, 293-300 (
1981).
82Mal: T.O. Malakhova and Z.N. Kobylkin, Russ. Metall., (2), 187-191 (1982).
83Bus: K.H.J. Buschow, I. Vincze, and F. van der Woude, J. Non-Cryst. Solids,
54, 101-106 (1983).
85Alt: Z. Altounian, C.A. Volkert, and J.O. Strom-Olsen, J. Appl. Phys., 57(6),
1777-1782 (1985).
85Aub: F. Aubertin, U. Bonser, S.J. Campbell, and H.G. Wagner, Z. Metallkd.,
76(4), 237-244 (1985).
85Dey: G.K. Dey and S. Banerjee, Mater. Sci. Eng., 73, 187-195 (1985).
85Mor: A.H. Morrish, R.J. Pollard, Z.S. Wronski, and A. Calka, Phys. Rev. B,
32(11), 7528-7531 (1985).
85Stu: M.M. Stupel, M. Bamberger, and B.Z. Weiss, Scr. Metall., 19, 739-740 (
1985).
Published in Bull. Alloy Phase Diagrams, 9(5), Oct 1988. Complete evaluation
contains 2 figures, 7 tables, and 60 references.
Special Points of the Zr-Fe System