Применения изотопов

Изотопы, особенно радиоактивные, имеют многочисленные применения. В табл. 1.13 указаны отдельные примеры некоторых промышленных применений изотопов. Каждая методика, упоминаемая в этой таблице, используется также и в других отраслях промышленности. Например, методика определения утечки вещества с помощью радиоизотопов используется: в производстве напитков-для определения утечки из накопительных баков и трубопроводов; в строительстве инженерных сооружений-для

Таблица 1.13. Некоторые применения радиоизотопов


Стерилизованный слабым источником радиоактивного излучения самец мухи цеце маркируется для последующего обнаружения (Буркина-Фасо). Эта процедура является частью эксперимента, проводимого для изучения мухи цеце и установления эффективных мер контроля, препятствующих широкому распространению трипаносомоза (сонной болезни). Муха цеце является переносчиком этого заболевания и заражает им людей, домашних животных и дикий скот. Сонная болезнь чрезвычайно распространена в некоторых частях Африки.

определения утечки из подземных водоводов; в энергетической промышленности-для определения утечки из теплообменников на электростанциях; в нефтяной промышленности-для определения утечки из подземных нефтепроводов; в службе контроля сточных и канализационных вод-для определения утечки из магистральных коллекторов.

Изотопы также широко используются в научных исследованиях. В частности, они используются для определения механизмов химических реакций. В качестве примера укажем использование воды, меченной устойчивым изотопом кислорода 18O, для изучения гидролиза сложных эфиров, подобных этилацетату (см. также разд. 19.3). С использованием масс-спектрометрии для обнаружения изотопа 18O было установлено, что при гидролизе атом кислорода из молекулы воды переходит в уксусную кислоту, а не в этанол


Радиоизотопы широко используются в роли меченых атомов в биологических исследованиях. Для того чтобы прослеживать метаболические пути * в живых системах, используют радиоизотопы углерод-14, тритий, фосфор-32 и сера-35. Например, усвоение фосфора растениями из обработанной удобрениями почвы можно проследить, пользуясь удобрениями, которые содержат примесь фосфора-32.

Радиационная терапия. Ионизирующее излучение способно разрушать живые ткани. Ткани злокачественных опухолей более чувствительны к облучению, чем здоровые ткани. Это позволяет лечить раковые заболевания при помощи у-лучей, испускаемых из источника, в качестве которого используется радиоактивный изотоп кобальт-60. Излучение направляют на пораженный опухолью участок тела больного; сеанс лечения длится несколько минут и повторяется ежедневно в течение 2-6 недель. Во время сеанса все остальные части тела больного должны быть тщательно закрыты непроницаемым для излучения материалом, чтобы предотвратить разрушение здоровых тканей.

Определение возраста образцов при помощи радиоуглерода. Небольшая часть того диоксида углерода, который находится в атмосфере, содержит радиоактивный изотоп 'бС. Растения поглощают этот изотоп в процессе фотосинтеза. Поэтому ткани всех

* Метаболизм-это совокупность всех химических реакций, протекающих в клетках живых организмов. В результате метаболических реакций происходит превращение питательных веществ в полезную энергию или в составные части клеток. Метаболические реакции обычно протекают в несколько простых этапов -стадий. Последовательность всех стадий метаболической реакции называется метаболическим путем (механизмом).



Радиоизотопы используются для наблюдения за механизмами осаждения наносов в устьях рек, портах и доках.


Использование радиоизотопов для получения фотографического изображения камеры сгорания реактивного двигателя в Центре неповреждающих испытаний лондонского аэропорта Хитроу. (На плакатах надписи: Радиация. Не подходить.) Радиоизотопы широко используются в промышленности для проведения неповреждающих испытаний.

Живые ткани обладают постоянным уровнем радиоактивности, потому что его убывание из-за радиоактивного распада компенсируется постоянным поступлением радиоуглерода из атмосферы. Однако, как только наступает смерть растения или животного, прекращается поступление радиоуглерода в его ткани. Это приводит к постепенному снижению уровня радиоактивности мертвых тканей.


Метод радиоуглеродной датировки позволил установить, что образцы древесного угля из Стоунхенджа имеют возраст около 4000 лет.


Радиоуглеродный метод геохронологии разработал в 1946 г. У.Ф. Либби, получивший за него Нобелевскую премию по химии в 1960 г. Этот метод широко используется в настоящее время археологами, антропологами и геологами для датировки образцов, имеющих возраст вплоть до 35000 лет. Точность этого метода-приблизительно 300 лет. Наилучшие результаты получаются при определении возраста шерсти, семян, ракушек и костей. Для определения возраста образца измеряют активность р-излучения (число распадов в минуту) в расчете на 1 г содержащегося в нем углерода. Это позволяет установить возраст образца при помощи кривой радиоактивного распада для изотопа 14С.


 

Какой возраст имеют Земля и Луна?


Луна

Многие горные породы на Земле и Луне содержат радиоизотопы с периодами полураспада порядка 10-9 -10-10 лет. Измеряя и сравнивая относительное содержание этих радиоизотопов с относительным содержанием продуктов их распада в образцах таких горных пороl, можно установить их возраст. Три наиболее важных метода геохронологии основаны на определении относительного содержания изотопов К (период полураспада 1,4-109 лет). "Rb (период полураспада 6•1O10 лет) и 2I29U (период полураспада 4,50-109 лет).

Метод датировки по калию и аргону. Такие минералы, как слюда и некоторые разновидности полевого шпата, содержат небольшое количество радиоизотопа калий-40. Он распадается, претерпевая электронный захват и превращаясь в аргон-40:


Возраст образца определяется на основе вычислений, в которых используются данные об относительном содержании в образце калия-40 по сравнению с арго-ном-40.

Метол датировки по рубидию и стронцию. Некоторые из наиболее древних горных пород на Земле, например граниты с западного побережья Гренландии, содержат рубидий. Приблизительно третья часть всех атомов рубидия приходится на долю радиоактивного рубидия-87. Этот радиоизотоп распадается, превращаясь в устойчивый изотоп стронций-87. Вычисления, основанные на использовании данных об относительном содержании в образцах изотопов рубидия и стронция, позволяют устанавливать возраст таких горных пород.

 

Метод датировки по урану и свинцу. Изотопы урана распадаются, превращаясь в изотопы свинца. Возраст таких минералов, как апатиты, которые содержат примеси урана, можно определять, сравнивая содержание в их образцах определенных изотопов урана и свинца.

Все три описанных метода использовались для датировки земных горных пород. Полученные в результате данные указывают, что возраст Земли равен 4,6-109 лет. Указанные методы использовались также для определения возраста лунных горных пород, доставленных на Землю из космических экспедиций. Возраст этих пород составляет от 3,2 до 4,2 *10 9 лет.

ядерное деление и ядерный синтез

Мы уже упоминали, что экспериментальные значения изотопных масс оказываются меньше значений, вычисленных как сумма масс всех входящих в ядро элементарных частиц. Разность между вычисленным и экспериментальным значением атомной массы называется дефект массы. Дефект массы соответствует энергии, необходимой для преодоления сил отталкивания между частицами с одинаковым зарядом в атомном ядре и связывания их в единое ядро; по этой причине она называется энергия связи. Энергию связи можно вычислить через дефект массы при помощи уравнения Эйнштейна

E = mс 2

где E-энергия, m-масса и с—скорость света.

Энергию связи принято выражать в мегаэлектронвольтах (1 МэВ = 106 эВ) на одну субъядерную частицу (нуклон). Электронвольт-это энергия, которую приобретает или теряет частица с единичным элементарным зарядом (равным по абсолютной величине заряду электрона), перемещаемая между точками с разностью электрического потенциала в 1 В (1 МэВ = 9,6* 1010 Дж/моль).

Например, энергия связи, приходящаяся на один нуклон, в ядре гелия приблизительно равна 7 МэВ, а в ядре хлора-35 она составляет 8,5 МэВ.

Чем больше энергия связи на один нуклон, тем больше устойчивость ядра. На рис. 1.33 показана зависимость энергии связи от массового числа элементов. Следует обратить внимание на то, что наибольшей устойчивостью обладают элементы с массовым числом, близким к 60. К таким элементам относятся 56Fe, 59Co, 59Ni и 64Cu. Элементы с более низкими массовыми числами могут, по крайней мере с теоретической точки зрения, повышать свою устойчивость в результате увеличения их массового числа. На практике, однако, представляется возможным увеличивать массовые числа только наиболее легких элементов, таких, как водород. (Гелий обладает аномально высокой устойчивостью; энергия связи нуклонов в ядре гелия не укладывается на кривую, изображенную на рис. 1.33.) Массовое число таких элементов увеличивается в процессе, называемом ядерным синтезом (см. ниже).

Рис. 1.33. Зависимость энергии связи от массового числа элемента.

 


 

Элементы с большими массовыми числами становятся более устойчивыми в результате уменьшения их массового числа, когда они превращаются в более легкие элементы. Это происходит в процессе расщепления ядер, который называется ядерным делением (см. ниже).

 

 

Оглавление: