Фазовая диаграмма системы Bi-Sb

К оглавлению: Другие диаграммы (Others phase diargams)

Bi-Sb

Bi-Sb (Bismuth-Antimony) H. Okamoto The assessed phase diagram for the Bi-Sb system is based on the experimental data of [25Ota], [59Pel], [59Web], [67Yim], and [85Pet], with review of the data of [49Mas], [52Nov], [61Gla], [63Cam], and [83Vec], and was obtained by thermodynamic modeling. The equilibrium phases are (1) the liquid phase, L, and (2) the continuous solid solution phase (Bi, Sb). The melting points of Bi and Sb are 271.442 and 630.755 C, respectively [Melt] . [59Pel], [59Web], and [67Yim] (also in [74Dis]) indicated slightly (~10 C at most) higher temperatures. The assessed liquidus is a smoothed envelope of the data on the high-temperature side. The assessed solidus is based on the present thermodynamic calculation, in good agreement with the most recent data of [67Yim], [83Vec], and [85Pet]. Difficulty in determining the solidus and the formation of an inhomogeneous solid solution during zone recrystallization [79Ber, 82Lyu, 85Zem] may be related to the existence of a miscibility gap in the solid phase. [84Bor] made a synthetic one-dimensional superlattice of Bi-Sb by periodic variation of the composition of deposition. The stability of this material at room temperature, which is a relatively high temperature compared to the melting points of Bi and Sb, may support the existence of the miscibility gap. The boiling points of pure Bi and Sb are 1562 and 1587 C, respectively. The boiling points of Bi-Sb alloys are 1595, 1635, 1643, 1650, and 1649 C at 30, 53.4, 72, 87.3, and 93.9 at.% Sb, respectively, where the boiling point of pure Sb is ~1635 C [31Lei]. In the present thermodynamic model, the excess Gibbs energy of mixing for the liquid phase is assumed to be a subregular type, because the excess entropy of mixing is probably small, as [84Ito] suggested. A preliminary calculation suggested that the Gibbs energy of mixing for the solid phase is nearly a regular solution type. The parameter was determined by trial and error. The positive heat of mixing value is in agreement with the comment given by [ Hultgren,B]. The calculated phase diagram represents the experimental liquidus and solidus data very well, except for the ~10 C mismatch around ~20 at.% Sb in the assessed diagram. According to the present model, the solid phase is immiscible at low temperatures. The calculated critical point of the miscibility gap is 50 at.% Sb and 88 C. However, this temperature is very sensitive to the change in Gibbs energy, and there may be >100 C uncertainty. The morphology of Bi-Sb diagrams with continuously miscible liquid and solid phases does not change up to 16 kbar [74Aka]. At higher pressures, the phase transition of Bi is involved. [76Ili] determined the pressure-composition phase diagram for 0 to 20 at.% Sb. The (BiII) phase exists up to 3.5 at.% Sb [ 55Bri], or 1.4 at.% Sb [63Bra]. The (BiIII, SbIII) to (Bi, Sb) transition pressure was determined by [55Bri] and [70Kol]. [68Koh] measured the pressure vs composition relationship at 625 C. [74Aka] reported pressure-temperature diagrams for 10, 20, 30, 40, 70, and 90 at.% Sb. Semiconducting Bi1-xSbx (0 < x њ 0.15) at 0 kbar transforms into a quasimetallic state under high pressure (њ 20 kbar) [70Bra]. The superconducting transition temperature of amorphous (Bi) decreases at a rate of ~0.02 C/at.% Sb (up to 8 at.% Sb) [66Shi]. [65Pal] showed " condensation diagrams" depicting the phases formed by vapor deposition on a substrate kept at low temperatures. The form of these diagrams is similar to that of the equilibrium diagram. 25Ota: B. Otani, Sci. Rep. Toh“ku Univ., 13, 293-297 (1925). 31Lei: W. Leitgebel, Z. Anorg. Allg. Chem., 202, 305-324 (1931) in German. 49Mas: G. Masing, P. Rahlfs, and W. Schaarwachter, Z. Metallkd., 40, 333-334 ( 1949) in German. 52Nov: I.I. Novikov, Technologies of Nonferrous Metals, Metallurgizdat, Moscow, 23-34 (1952) in Russian. 55Bri: P.W. Bridgman, Proc. Am. Acad. Arts Sci., 84, 43-109 (1955). 59Pel: E. Pelzel, Z. Metallkd., 50(7), 392-395 (1959) in German. 59Web: Th. Weber and K. Cruse, Z. Anal. Chem., 166, 333-356 (1959) in German. 61Gla: V.M. Glazov, Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk. Met. Toplivo, (4), 39-42 (1961) in Russian; quoted in [Elliott]. 63Bra: N.B. Brandt and N.I. Ginzburg, Zh. Eksp. Teor. Fiz., 44(3), 848-851 ( 1963) in Russian; TR: Sov. Phys. JETP, 17(3), 576-578 (1963). 63Cam: A.N. Campbell and J. Winkler, Can. J. Chem., 41(3), 743-749 (1963). 65Pal: L.S. Palatnik, N.T. Gladkikh, and M.N. Naboka, Fiz. Tverd. Tela, 7(4), 1105-1109 (1965) in Russian; TR: Sov. Phys. Solid State, 7(4), 887-890 (1965). 66Shi: J.S. Shier and D.M. Ginsberg, Phys. Rev., 147(1), 384-391 (1966). 67Yim: W.M. Yim and J.P. Dismukes, Crystal Growth, H.S. Peiser, Ed., Pergamon Press, New York, 187-196 (1967). 68Koh: F.J. Kohl and K.D. Carlson, J. Am. Chem. Soc., 90(18), 4814-4817 (1968). 70Bra: N.B. Brandt, H. Dittman, Ya.G. Ponomarev, and S.M. Chudinov, Zh. Eksp. Teor. Fiz. Pisma, 11(5), 250-253 (1970) in Russian; TR: JETP Lett., 11(5), 160- 162 (1970). 70Kol: T.N. Kolobyanina, S.S. Kabalkina, L.F. Vereshchagin, A.Ya. Michkov, and M.F. Kachan, Zh. Eksp. Teor. Fiz., 59(4), 1146-1155 (1970) in Russian; TR: Sov. Phys. JETP, 32(4), 624-629 (1971). 74Aka: M. Akaishi and S. Saito, Bull. Tokyo Inst. Tech., (120), 81-87 (1974). 74Dis: J.P. Dismukes and W.M. Yim, J. Cryst. Growth, 22, 287-294 (1974). 76Ili: M.A. Il›ina, Fiz. Tverd. Tela, 18(4), 1051-1055 (1976) in Russian; TR: Sov. Phys. Solid State, 18(4), 600-602 (1976). 79Ber: H. Berger, B. Kuhrig, G. Oelgart, U. Pietsch, and D. Schikora, Phys. Stat. Solidi (a), 52, 427-432 (1979). 82Lyu: V.G. Lyuttsau, V.S. Zemskov, E.P. Kostyukova, O.A. Kichkina, A.D. Belaya, G.N. Kozhemyakin, and V.V. Rozhdestvenskaya, Izv. Akad. Nauk SSSR, Met. , (6), 187-190 (1982) in Russian; TR: Russ. Metall., (6), 143-145 (1982). 83Vec: A.A. Vecher, P.A. Poleshchuk, A.A. Kozyro, and A.G. Gusakov, Zh. Fiz. Khim., 57(4), 871-874 (1983) in Russian; TR: Russ. J. Phys. Chem., 57(4), 528- 530 (1983). 84Bor: S.S. Borisova, D.L. Egikyan, I.P. Karabekov, V.V. Kondratenko, R.A. Mikaelyan, I.F. Mikhailov, and A.G. Ponomarenko, Fiz. Tverd. Tela, 26(7), 2107- 2109 (1984) in Russian; TR: Sov. Phys. Solid State, 26(7), 1277-1278 (1984). 84Ito: S. Itoh and T. Azakami, J. Jpn. Inst. Met., 48(3), 293-301 (1984) in Japanese. 85Pet: D.A. Petrov and V.M. Glazov, Dokl. Akad. Nauk SSSR, 283(6), 1428-1431 ( 1985) in Russian; TR: Dokl. Phys. Chem., 283(6), 863-865 (1985). 85Zem: V.S. Zemskov, A.D. Belaya, G.N. Kozhemyakim, and L.G. Kovshova, Izv. Akad. Nauk SSSR, Met., (6), 218-219 (1985) in Russian; TR: Russ. Metall., (6), 205-206 (1985). Submitted to the APD Program. Complete evaluation contains 1 figure, 3 tables, and 68 references. 1