Фазовая диаграмма системы In-Te
К оглавлению: Другие диаграммы (Others phase diargams)
In-Te (Indium-Tellurium)
H. Okamoto
The assessed phase diagram for the In-Te system is based primarily on [34Kle]
and [64Gro], with review of the data of [65Pal] and [80Shc], and has been
modified to reflect additional information on the relationship between bIn2Te3
and aIn2Te3 from [62Hol] and [70Gal] and on the liquid miscibility gap at
compositions below ~30 at.% Te from [71Wob]. The In-richest phase is In4Te3 [
73Hog].
The critical temperature of the miscibility gap is 533 C [71Wob] or 528 C [
80Shc], but not as high as the ~600 C postulated by [64Gro]. The composition
of the critical point is 18 at.% Te [71Wob]. The compositions of the two
liquids at 450 C are 6.9 and 27.2 at.% Te, respectively [80Shc].
The In side of the assessed diagram is based tentatively on [71Wob], who gave
the most detailed data in this composition range. Because the solubility of Te
in In(L) is small (<< 1 at.%), the eutectic temperature must be only slightly
below the melting point of In; it is shown at 156 C in the assessed diagram.
If the reaction is eutectic, the solubility of Te in (In) must be very small.
No solubility of In in (Te) is known.
In2+xTe3, with a composition between InTe and In2Te3, was found by [63Sem].
Because of the similarity in the lattice parameter, this is probably the same
as a phase found later by [65Dek], [67Tol], [68Dek], and [68Ves] in a thin
film, also with a composition between In2Te and In2Te3 (In3Te4 is speculated
in [67Tol]).
In2Te3II in a metastable and metallic form was found by [39Lan], [64Jay], and [
64Gel]. In2Te3 in a hexagonal form was found in a thin film [70Bar].
In-Te alloys containing 70 to 90 at.% Te become amorphous when quenched from
the liquid state [63Luo]. Amorphous InTe films were obtained by thermal
sputtering of single-crystal samples on unheated substrate in a vacuum of
about 10-3 Pa [73Pol].
InTeII, the NaCl-type high-pressure modification of InTe, was reported by [
63Ban], [64Jay], and [85Ome]. The transition between InTeI and InTeII under
hydrostatic pressure is accompanied by a hysteresis effect whose magnitude
increases so markedly at lower temperatures that InTeII can be retained at
ambient pressure [85Ome]. The transition between the two liquids (L and L›) is
attributed to the conversion of the In cations from univalent to trivalent
with a decrease in volume [85Ome].
InTeII may be obtained at >32 kbar under high temperatures [63Dar]. InTeII
forms by melting at 40 to 50 kbar and 1100 C [63Ban]. It also forms by
transformation of InTeI at 28 kbar and >150 C [63Ban] or 50 kbar and 150 C [
64Scl]. InTeII can be retained at 1 bar pressure and <125 C by quenching to
liquid nitrogen temperature (-195.80 C) [63Dar]. InTeII undergoes a
transition to CsCl-type InTeIII at about 150 kbar [85Cha].
The superconducting transition temperature of InTeII is 2.18 K [64Jay] or 3.2
to 3.45 K [64Gel]. It decreases almost linearly with increasing Te content to
~1.04 K at 54.9 at.% Te [64Gel].
Tetragonal InTeII› exists as a transitory phase during the InTeII = InTeI
transformation at 1 bar [65Scl].
When In2Te3 is subjected to pressures above 25 kbar, it undergoes a phase
transformation to In2Te3II, accompanied by a large drop in resistivity [64Jay].
The superconducting transition temperature is 1.0 K [64Jay].
34Kle: W. Klemm and H.U. von Vogel, Z. Anorg. Chem., 219, 45-64 (1934) in
German.
39Lan: P.W. Lange, Naturwissenschaften, 17, 133-134 (1939).
49Hah: H. Hahn and W. Klingler, Z. Anorg. Chem., 260, 97-109 (1949) in German.
53Sch: K. Schubert, K. Anderko, M. Kluge, H. Beeskow, M. Ilschner, E. Dorre,
and P. Esslinger, Naturwissenschaften, 40, 269 (1953) in German.
54Inu: H. Inuzuka and S. Sugaike, Proc. Jpn. Acad., 30(5), 383 (1954).
62Hol: P.J. Holmes, I.C. Jennings, and J.E. Parrott, Phys. Chem. Solids, 23, 1-
5 (1962).
63Ban: M.D. Banus, R.E. Hanneman, M. Strongin, and K. Gooen, Science, 142, 662-
663 (1963).
63Dar: A.J. Darnell, A.J. Yencha, and W.F. Libby, Science, 141, 713-714 (1963).
63Luo: H.L. Luo and P. Duwez, Appl. Phys. Lett., 2(1), 21 (1963).
63Sem: S.A. Semiletov and V.A. Vlasov, Kristallografiya, 8(6), 877-883 (1963)
in Russian; TR: Sov. Phys. Crystallogr., 8(6), 704-708 (1964).
64Gel: S. Geller, A. Jayaraman, and G.W. Hull, Jr., Appl. Phys. Lett., 4(2),
35-37 (1964).
64Gro: E.G. Grochowski, D.R. Mason, G.A. Schmitt, and P.H. Smith, J. Phys.
Chem. Solids, 25(6), 551-558 (1964).
64Jay: A. Jayaraman, S. Geller, D.B. McWhan, and G.W. Hull, Jr., J. Met., 16(1)
, 98 (1964).
64Scl: C.B. Sclar, L.C. Carrison, and C.M. Schwartz, Science, 143, 352-353 (
1964).
65Gel: S. Geller, A. Jayaraman, and G.W. Hull, Jr., J. Phys. Chem. Solids, 26,
353-361 (1965).
65Pal: L.S. Palatnik, L.V. Atroshchenko, L.P. Gal'chinetskii, and V.M. Koshkin,
Dokl. Akad. Nauk, SSSR, 165, 809-812 (1965) in Russian; TR: Sov. Phys. Dokl.,
10(12), 1215-1218 (1966).
65Scl: C.B. Sclar, L.C. Carrison, and C.M. Schwartz, Science, 147, 1569-1571 (
1965).
67Tol: V. Tolutis, A. Deksnys, J. Paukste, and J. Verkelis, Liet. Fiz.
Rinkinys, 7(2), 453-461 (1967) in Russian.
68Dek: A. Deksnys, D. Sakalauskaite, and V. Tolutis, Liet. Fiz. Rinkinys, 8,
917-931 (1968) in Russian.
68Ves: T. Vesiene, A. Deksnys, and V. Tolutis, Liet. Fiz. Rinkinys, 8, 933-938
(1968) in Russian.
70Bar: K.C. Barua and A. Goswami, Indian J. Pure Appl. Phys., 8(5), 258-260 (
1970).
70Gal: L.P. Gal'chinetskii, L.V. Atroshchenko, V.M. Koshkin, and L.A. Sysoev,
Izv. Akad. Nauk SSSR, Neorg. Mater., 6(5), 860-863 (1970) in Russian; TR:
Inorg. Mater. (USSR), 6(5), 756-759 (1970).
71Wob: M. Wobst, Scr. Metall., 5, 583-585 (1971).
73Hog: J.H.C. Hogg and H.H. Sutherland, Acta Crystallogr. B, 29(11), 2483-2487
(1973).
73Pol: Yu.G. Poltavtsev, V.P. Zakharov, and T.V. Remizovich, Kristallografiya,
18(5), 1109-1110 (1973) in Russian; TR: Sov. Phys. Crystallogr., 18(5), 701-
702 (1974).
76Sut: H.H. Sutherland, J.H.C. Hogg, and P.D. Walton, Acta Crystallogr., 32(8),
2539-2541 (1976).
78Kar: Th. Karakostas, N.F. Flevaris, N. Vlachavas, G.L. Bleris, and N.A.
Economou, Acta Crystallogr. A, 34(1), 123-126 (1978).
78Wal: P.D. Walton, H.H. Sutherland, and J.H.C. Hogg, Acta Crystallogr. B, 34(
1), 41-45 (1978).
80Shc: O.D. Shchelikov, Izv. Akad. Nauk SSSR, Neorg. Mater., 16(2), 233-236 (
1980) in Russian; TR: Inorg. Mater. (USSR), 16(2), 147-149 (1980).
85Cha: T. Chattopadhyay, R.P. Santandrea, and H.G. Von Schnering, J. Phys.
Chem. Solids, 46(3), 351-356 (1985).
85Ome: A.V. Omel'chenko and V.I. Soshnikov, Zh. Fiz. Khim., 59(7), 1842-1844 (
1985); TR: Russ. J. Phys. Chem., 59(7), 1094-1095 (1985).
Submitted to the APD Program. Complete evaluation contains 3 figures, 5 tables,
and 98 references.
Special Points of the In-Te System